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WHAT ISTHISTUTORIAL ABOUT ?

INTRODUCTION

GaN discrete components

Monolithic integration

Technological problems to solve

* Dominate the GaN market today
* Off-the-shelf components or
customized designs through foundry

¢ To unlock full potential of fast
switching GaN technology:
¢ Reduction of parasitics
between driver and power
device
* Reduction of parasitics on
switching node of half-bridge
* For those applications where it makes
sense, both performance wise as cost-
wise

Back-gating effects in half-bridges
Low-voltage control and diagnostics
circuits monolithically integrated with
high-voltage power devices

Suite of passive components

Circuit design problems to solve

Design of gate driver without
complementary devices

Level shifting for high-side
driver/switch

Logic gates / Analog sub-circuits
without complementary devices
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WHAT ISTHISTUTORIAL ABOUT ?
FROM DISCRETE COMPONENTS TO GaN-ICs
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WHAT ISTHISTUTORIAL ABOUT ?
FROM DISCRETE COMPONENTS TO GaN-ICs
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And one step further
(and its all in GaN)
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BACK-GATING EFFECT IN HALF-BRIDGES



KNOWN EFFECT IN CMOS
BODY EFFECT

Change in threshold voltage ...When Vg, # 0 Volt

Body effect pemm L 1

The body effect is the change in the threshold voltage by an amount approximately equal to the change in the source-bulk voltage, Vi, because the body influences the threshold voltage (when it is not tied to the source). It can be thought of as a second gate, and is

sometimes referred to as the bacik gafe,and accordingly the body effect isfgometimes called the back-gate effect.

For an enhancement-mode nNMOS MOSFET, the body effect upon threshold voltage is computed according to the Shichman—Hodges model ™ which is accurate for older process nodes, P2msian neededl | 1qing the following equation

Vrv = Vro +‘:r( [Vsz 1 2¢F\—V|2¢F\)

where Vi is the threshold voltage when substrate bias is present, Vip is the source-to-body substrate bias, 2¢ ¢ Is the surface potential, and Vyp is threshold voltage for zero substrate bias, ¥ = (b /€0r ) 1/2¢€51 N4 Is the body effect parameter, ¢, is oxide

thickness, €, is oxide permittivity, eg; is the permittivity of silicon, V4 is a doping concentration, g is elementary charge.
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Example : nmos in pwell
If pwell is not connected to same
potential as source

Vs Vo

Depletion Region

Na~
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BACK-GATING EFFECT IN P-GAN HEMT ?

Example : nmos in pwell Example : p-GaN HEMT on Silicon substrate

If pwell is not connected to same
potential as source

Vs I Vo

Depletion Region

;‘“ ate N

v,

Silicon substrate
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WHY IS IT IMPORTANT FOR MONOLITHIC INTEGRATION OF HALF-BRIDGES ?

Example for Vin = 200 Volt.
When HS switch is ON, and
- LS switch is OFF :
VS LS= 0Volt

VSB_LS = 0Volt

HiE e

1
I Driver IC
Driver IC in";’ier : VS_HS ~ 199 Volt
inSi technology| |

technology

e i1
. E ol |
g g e Disconnect substrate from
Source_HS, thenVSB = 199 Volt

¢ Current in substrate

—_——— e e e ———

Discrete devices :Vsz = 0 Volt Monolithic half-bridge : VSB # 0 Volt
Loss in substrate ?
Back-gating in HS switch ?
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PROPOSED SOLUTION
GaN-on-SOIWITH DEEP TRENCH ISOLATION

Deep silicon contact for V=0 Volt
for each power transistor in the
half-bridge.

Buried oxide and oxide filled
deep trench isolate the HS and
LS devices from each other and
from the silicon substrate.
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ELECTRICAL MEASUREMENT OF GaN-on-SOI
BACKGATING EFFECT

(@) Low side High side
. D ST 1.4F(a) GaN-on-Si 1.4¢(b) GaN-on-SOl
AlGaN AlGaN
J 7 1.2F Subs. B grounded 12F Subs. B2 connect. to S2

(Al)GaN : :

V.=0V a 100 vV
B —_D 1.0k S2 — 1.0¢F P

Si(111) = 100V £ 200V

c08f ~—__ | co08V,70V
z z

= 0.6 F 200V 06k |, reduction is eliminated.

l I Klggm VG282=5V VGZSZ:5V
0.4¢ =1V 0.4¢ V=1V

(Al)GaN . . . . X2 . . . LD

si111) B2 10° 102 10" 10° 10% 107 10® 107 10" 10° 10' 107

Si{o . K
I Stress time (s) Stress time (s)

» The backgating effect can be fully eliminated by connecting the source terminals
to their respective Si(111) device layer.

- mmec 10 PUBLIC



ELECTRICAL MEASUREMENT OF GaN-on-SOI
BACKGATING EFFECT

(a) Low side High side
B D = 4F(a) GaN-on-Si 1.4F(b) GaN-on-SOlI
AlGaN
3 Subs. B floating 1.2F Subs. B floating
(A)GaN : :
L V=0V 10k Vs,=0V
Si(111) e 100 V
g 10V S 0.8}
& 200 V
- _/
p.?;iN 0.6F 200 V ey 0.6 Vv .y
AlGaN Vezsz_ 04 G2s2
0.4} - AF =
(AI)GaN il Tl Tl Il 282_].\I/ | l | l VDI232 1\|/
sit11) B2 10° 10® 10" 10° 10" 10° 10° 10% 10" 10° 10' 107
; Stress time (s) Stress time (s)

Si(100)

» The backgating effect cannot be removed by simply floating the Si(111) device layer;
> The substrate contact is indispensable.
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ELECTRICAL CHARACTERISTICS P-GAN POWER HEMT AND
ISOLATION



BUFFER CHARACTERISTICS

— —Stress—«recovery—
N

€ 10
= 107
I=
L
3
%
© - 0
g L 150 °C
9 F08  25°C

0.6
10-10
-500 0 500

001 0.1 t_i 9 10
ecovery time (S
Vbuffer (V) y

Buffer leakage in spec over temperature range and voltage range. Stress and recovery measurements on the buffer using a 2DEG resistor

shows that the buffer is low in dispersion over temperature
range.(Trapping effects in buffer under control)
umec
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ISOLATION
HIGH BREAKDOWN VOLTAGE FOR LATERAL AND VERTICAL ISOLATION OF HEMTs

< 10%(a) Trench lateral < 10%(b) Vertical buried
= 10* isolation “ = 10 SiO, iso.

S 10 0 S 10

- —25°C .

3 10° o 3 10

% 10-8 ——150 °C O 10-8

&510-10 g -

$ 107+ s

—! 0 250 500 7501000 — 0 250 500 7501000

Voltage (V) Voltage (V)

) mmec 14 PUBLIC



P-GAN HEMT KEY CHARACTERISTICS

HEMT with W = 40mm
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k}o 25 °C
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Vs (V)

Power devices are modeled using the MVSG model, supported by the Compact Modeling Coalition

“umec

15

PUBLIC



DEVICE DISPERSION
DYNAMIC Ry,

Vpsol] [
Vs g L R
Vesnot [ . eV

VGS, ton toff

10 us 90 us

Pulse conditions for measurement of the dynamic Rps o
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Normalized dynamic Rpg o as a function of the quiescent voltage.

%1.3

1 125°C
1150 -C
............ *..------

(0.0)(0,33){0.66){0,99)(0,132)(0.165)(0,198)
(Ves 0.Vos o)

Very low dispersion is observed.
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INTEGRATED PASSIVE COMPONENTS (FREE COMPONENTS)



INTEGRATED PASSIVE COMPONENTS THAT COME FREEWITH THE

TECHNOLOGY

High-ohmic Resistor

Low Ohmic resistor

MIM capacitor

Resistor using the 2-dimensional
electron gas. 600 Q/ [

Si (100)

Length

Resistor using the metal layer of the
ohmic contacts. 1.7 Q1)

Ohm_hitl

| n— Can cnannel]
Nimplantation
Si(111)
Euredoad

Si (100)

Back-end capacitor using the metal

layers for the ohmic contacts, gate metal

and metal 1. 0.3 fF/um?
Vel [T

Ohm Mtl
Gate Mt

N implantation

BOX{(buriedo idn?'l [EEED)

Si (111)

Spice model including :

coefficients

* Linear and quadratic temperature
coefficients

* Linear and quadratic voltage linearity

Spice model including :
* Linear voltage linearity coefficient

* Linear and quadratic temperature
coefficients

Layout recommendation :
* Electrode in Ohmic metal has large
series resistance

* Use stripe geometry capacitor unit
cells for Rs reduction
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EXAMPLES : P-GAN HEMTS WITH INTEGRATED DRIVERS



P-GAN HEMT WITH INTEGRATED DRIVER

DEMONSTRATION

(a)D RTL \i:"Push—puII";
DDA B :
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; i Ha
Reoes[ |
; N e I

el ]

HZI— :

sic
SBD

‘TP_D

Lopr

Rshunt

TP_Shunt

— 200
4 4
% < 150
82 2 8100t
0 0 > 50 F
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Time (us)

Time (us)

250
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N
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HALF-BRIDGE WITH INTEGRATED DRIVERS -
DEMONSTRATION IN 48 TO | VOLT BUCK CONVERTER ~ _* .

1 MHz — Vo
fvs""

l
l
l

Voltage (V)
=
o u
o o

jal
o

Drivers
HS =
© 40
[e>]
K
=)
>

398.15 398.20 398.25

Time (us)
(a el TR T P T T
Wiessisg T e e i
1| T 1l L
Vau |
Vs, ; ,
e {
J Il It 1 il Il I I i il
e = :
T VeELV
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EXAMPLES : LOGIC GATES



LOGIC FUNCTIONS IN A GaN POWER TECHNOLOGY
RTL : RESISTOR —TRANSISTOR LOGIC

Using the 2DEG resistor and a low voltage GaN HEMT, basic logic functions can be designed in RTL (Resistor-Transistor Logic):
* The low voltage GaN HEMT is designed with small effective gate width (e.g. 6um) and L;p= 1.5um.
* Threshold voltage is approximately the same as for the power device.

Voo Voo Vos mEm s/ a0 NoRgae—
2DEG $ $ o000, L1 11
reS|st0r S $ =010 Oy  — T 5 3
Y 0 10 1 5 E =1 S IR [ R R
— 511 x > l 5F r—l' r—l' r—['
o—| °—| A |—° O ! ) ! ) ) ) H > 0= n T h T h
A A H S -150-100-50 0 50 100 150 -500 -400 -300 -200 -100 O

Time (us) Time (us)

10 {(c) NAND gate}——— 10 f(d) Flip-flop}——
D) oy W s D 5 N { Ny B
] 5

<4 i I s I s S 04 ) A N
] = ™ S SR | S g Wy I &
GND 5 100 0 100 200 300 400 -100 0 100 200 300 400

. Time (us) Time (us)

(a) Inverter (b) NOR (c) NAND (d) Flip-flop
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EXAMPLES :ANALOG FUNCTIONS / PROTECTION CIRCUITS / ...



ANALOG BLOCK DESIGN USING
TRANSISTORS/RESISTORS/CAPACITORS

Example | :48 to | Volt (monolithic) buck converter

o
3]

(a) Ramp generator

~—
(=)
N

I(A) V(V) V(V) V(V) V(V) V(V) V(V) V(V)

~
3}

C|NJ_ _’_L
V,

Drivers E L "
_uu>_r‘ \Y4
Dead- Half- bndge

time
M WM| control
shiftl > CLK;, _l. ------ _ 1
ak, —'I_ — Co=F »
Comparator

cu<2
- Rerr t o o
Rshife2 % I \V4

=)
<
o

—
o

T%%%%

<
o

|

[EEY

<

w
w

o
%]

w

[
=]
11T 1 1 1 11111 11T 1 111 A 111

e
Vrefﬁerr V,
Eror amplifir 7 0.0 160.0 3000
time (us)

(Simulation result)

G
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DIAGNOSTIC AND PROTECTION CIRCUITS
EXAMPLES

Undervoltage lock-out Over-Temperature protection Over-current protection

Monolithically integrated !
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HOW TO GET ACCESS TO THIS GaN-IC TECHNOLOGY ?
GaN-IC PROTOTYPING AND VOLUME PRODUCTION



TECHNOLOGY ACCESS (PROTOTYPING)
*  MULTI-PROJECT WAFER SERVICE (MPW)

Design B

= Access to low cost prototyping
runs through MPW service

=  Mask and wafer fabrication costs
are shared between customers

=  Small NRE costs

= Extensive check on all submitted
designs

oo = Limit on max number of wafers

processed

Design A )
Design n

Your design

Contact: ganmpw(@imec-int.com

*Reference to a MPW wafer, please verify the current commercial offer.

https://www.imec-int.com/en/innovation/build-your-gan-ics-with-imec-s-gan-on-soi-mpw-process

http://europractice-ic.com/mpw-prototyping/power-electronics/
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TECHNOLOGY ACCESS (LOW VOLUME PRODUCTION)
- DEDICATED RUNS

®»  Dedicated mask runs which return
approximately 12 x 200 mm/8 inch
wafers. Prices on request

* For even larger production runs, we

offer the possibility of engaging with
external manufacturing partners

Contact: ganmpw(@imec-int.com

https://www.imec-int.com/en/innovation/build-your-gan-ics-with-imec-s-gan-on-soi-mpw-process
http://europractice-ic.com/mpw-prototyping/power-electronics/
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