DARE - radiation hardening by design

1.8 V Power-On-Reset Product Brief

Product Overview

DARE22G POR18 implements a 1.8 V supply power-on-reset circuit for radiation-hardened applications in the commercial GF 22 nm FDSOI CMOS technology.

This IP macro supports a range of DARE22G platform IP blocks that require power-on-reset signals in the I.8 V supply domain.

Features

Main functionalities include:

- I.8 V output reset signal
- External reset assertion override
- Positive-going trip point range of 1.36 1.42 V
- Negative-going trip point range of 1.36 1.40 V
- Hysteresis range of 0 40 mV
- Low operating current (≤ 8 μA)
- TID immunity over 100 krad (SiO₂)
- SET immunity over 60 MeV.cm²/mg
- SEL immunity over 70 MeV.cm²/mg

Block Diagram

The POR18 macro generates a reset signal when the 1.8 V power supply is first applied to the chip and keeps it asserted until the supply voltage reaches its nominal value. It employs a bandgap-based architecture, where PTAT and CTAT voltages from an open-loop bandgap reference are compared to produce the power-on reset signal.

The internally generated reset signal in the 1.8 V domain is output via the PORIV8 pin.

The power-on reset functionality can be combined with an external 1.8 V reset signal provided via the PORIV8_OVR pin. When asserted, this input signal will override the internally generated reset signal.

PORIV8_OVR VSSIV8 VSUB

Pin Interface

Pin Name	Туре	Description
VDDIV8	Power	Power supply
VSS1V8	Ground	Ground supply
VSUB	Ground	P-substrate bias voltage
PORIV8	Digital	Reset output
PORIV8_OVR	Digital	Reset override input

Physical Dimensions

DARE22G POR18 is implemented as a core macro.

IP Name	Width	Height	
POR18	58 µm	263 µm	

Contact

For further information, please contact us at dare@imec.be

Operating Conditions

Performance and reliability are not guaranteed outside these recommended operating boundaries.

Parameter	Name	Minimum	Typical	Maximum	Unit
Supply voltage	V_{DDIV8}	1.62	1.8	1.98	V
Operating temperature	T _I	-40	25	125	°C
TID threshold	TID _{th}	100			krad (SiO ₂)
LET threshold (SET)	LET _{th_SET}	60			MeV.cm ² /mg
LET threshold (SEL)	LET _{th_SEL}	70			MeV.cm ² /mg