

DARE - radiation hardening by design

Body Bias Generator Product Brief

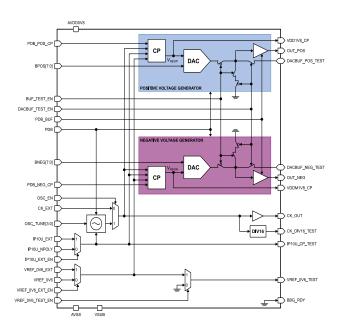
Product Overview

DARE22G BBG implements a body bias voltage generator for radiation-hardened applications in the commercial GF 22 nm FDSOI CMOS technology.

In such technology, body biasing regulates transistor threshold voltages, directly impacting performance and power consumption. On-chip control of body bias voltages enables dynamic adjustment of transistor characteristics to modulate speed and power trade-offs. Body bias voltage generators can also be integrated with variation monitors to create adaptative tuning mechanisms to compensate PVT variations, aging effects, and radiation-induced degradation during operation.

Features

Main functionalities include:


- Dual voltage generation for N-well (0 V to 1.8 V) and P-well (-1.8 V to 0 V) biasing
- 8-bit output voltage selection granularity
- Coverage area up to 9 mm² (about 3M gates)
- Power-down mode (< 65 μA)
- Maximum current consumption below 2 mA
- TID immunity over 100 krad (SiO₂)
- SET immunity over 60 MeV.cm²/mg
- SEL immunity over 70 MeV.cm²/mg

Block Diagram

The BBG macro mainly consists of an oscillator and two voltage generators based on a common architecture. Each voltage generator employs a charge-pump to produce a regulated reference voltage of either -1.8 V or 1.8 V, which is then scaled by an 8-bit R-2R DAC to provide a biasing signal with the correct output voltage level according to control inputs. Adjusted voltage signals are delivered to the output through analog buffers.

A 100 MHz clock signal is required by the charge-pump circuits and can be either provided externally via the CK_EXT input pin or generated internally by the built-in oscillator. This selection is controlled by the OSC_EN input signal. In active mode (PDB = 1), the internally selected clock signal is buffered out via CK_OUT pin to be used by other system blocks.

Internal cells also require an external 10 μA sinking current signal and a 0.6 V reference voltage signal to operate. These signals can be provided either by an onchip instance of the DARE22G IVREF18 IP or externally co-integrated in the chip. Additional external reference inputs and selection control signals are provided for reference signals provided off-chip.

Pin Interface

Pin Name	Туре	Description		
AVDD0V8	Power	Power supply		
AVSS	Ground	Ground supply		
VSUB	Ground	P-substrate bias voltage		
IPIOU EXT	Analog	External reference current		
IPIOU NPOLY	Analog	Biasing reference current		
	,	from IVREF18 IP instance		
IP10U_CP_TEST	Analog	Mirrored internal reference		
	,	current		
VREF 0V6 TEST	Analog	Internal reference voltage		
VREF 0V6 EXT	Analog	External reference voltage		
VREF 0V6	Analog	Reference voltage from		
		IVREF18 IP instance		
DACBUF_POS_TEST	Analog	Positive voltage generator		
		test output		
DACBUF NEG TEST	Analog	Negative voltage generator		
		test output		
VDDIV8 CP	Analog	Regulated reference voltage		
_	J	from positive charge pump		
VDDMIV8 CP	Analog	Regulated reference voltage		
_	J	from negative charge pump		
OUT POS	Analog	Positive bias voltage		
OUT NEG	Analog	Negative bias voltage		
PDB	Digital	Full power-down enable		
PDB POS CP	Digital	Positive charge-pump		
	ŭ	power-down enable		
PDB_NEG_CP	Digital	Negative charge-pump		
	· ·	power-down enable		
PDB BUF	Digital	Output buffering power-down		
_	Ū	enable		
IPI0U_EXT_EN	Digital	External current reference		
	_	selection		
VREF_0V6_EXT_EN	Digital	External voltage reference		
	Ū	selection		
VREF_0V6_TEST_EN	Digital	Reference voltage test		
		output enable		
OSC_EN	Digital	Internal oscillator enable		
CK_EXT	Digital	External input clock		
CK_OUT	Digital	Buffered output clock		
CK_DIV16_TEST	Digital	Output clock signal for testing		
OSC_TUNE [3:0]	Digital	Oscillator tuning bits		
DACBUF_TEST_EN	Digital	DAC/buffer test mode enable		
BUF_TEST_EN	Digital	DAC/buffer test selection		
BPOS[7:0]	Digital	Positive output level setting		
BNEG[7:0]	Digital	Negative output level setting		
BBG RDY	Digital	Ready flag (reserved)		

Physical Dimensions

Contact

DARE22G BBG is implemented as a core macro.

For further information, please contact us at dare@imec.be

IP Name	Width	Height	
BBG	401 µm	476 µm	

Operating Conditions

Performance and reliability are not guaranteed outside these recommended operating boundaries.

Parameter	Name	Minimum	Typical	Maximum	Unit
Supply voltage	V_{DD}	0.72	0.8	0.88	٧
Input reference current	I _{PIOU}	8	10	12.5	μA
Input reference voltage	V_{BG0V6}	570	600	630	V
Input frequency	f _{CK}	92	100	112	MHz
Operating temperature	Tj	-40	25	125	°C
ESD rating (HBM)	V_{HBM}	2			kV
TID threshold	TID_th	100			krad (SiO ₂)
LET threshold (SET)	LET _{th_SET}	60			MeV.cm ² /mg
LET threshold (SEL)	LET _{th_SEL}	70			MeV.cm ² /mg